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Abstract 

     Soil Temperature (ST) is critical for environmental applications. While its measurement is often difficult, 

estimation from environmental parameters has shown promise. The purpose of this study was to model ST in cold 

season from soil properties and environmental parameters. This study was conducted as a pot experiment in Ardebil, 

Iran. Automatic thermal sensors were installed at 5 and 10 cm depths. Besides, soil properties and environmental 

parameters were determined based on field and laboratory works. Machine learning methods including Multiple 

Linear Regression (MLR), Artificial Neural Network (ANN), and Adaptive Neuro-Fuzzy Interface System (ANFIS) 

were used for modeling ST. The air temperature was observed as the most effective factor in ST modeling. The 

relationship between soil and air temperature was stronger at 5 cm depth compared to 10 cm. The R2 between soil 

and air temperature was higher in the absence of sunlight than in its presence. The prediction of ANFIS (R2= 0.96 

and MAPE= 10.5) was closer to the observed ST values compared to the ANN (R2= 0.91 and MAPE= 35) and MLR 

(R2= 0.57 and MAPE= 41). The results revealed the advantage of ANFIS method for ST modeling. This approach 

can be applied for soil depths and locations with data gap.  
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1. Introduction 

 

     Soil temperature (ST) reflects the amount of 

radiation emitted from the surface and sub-

surface of the earth and determines the exchange 

of energy between Earth’s surface and 

atmosphere (Weng et al., 2019a). It is one of the 

most important parameters affecting climate 

change (Davidson and Janssens, 2006). Soil 

temperature is a key factor in Soil Moisture (SM) 

retrieval, determination of ST regimes, soil 

organic matter decomposition rate, seed 

germination, and plant growth (Moore et al., 

2015; Sandholt et al., 2002; Shaoning et al., 

2014). Soil temperature fluctuations over time  

 

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and in space is  among the most important factors  

affecting the exchange and transport of matter 

and energy and direct or indirect physical 

processes in the soil (Gao et al., 2017; Onwuka 

and Mang 2018; Wang et al., 2014; Weng et al., 

2019a).  

  Soil temperature regimes and distribution of 

temperature profiles depend on the terrain, 

meteorological, and subsurface variables 

(Hartemink and Bockheim, 2013; Stolpe and 

Undurraga, 2016). These variables include the 

structure and physical properties of Earth’s 

surface and its thermal properties, vegetation 

coverage, SM, and climatic variables including 

temperature, rainfall, wind, solar radiation, and 

air humidity (Oyeyemi et al., 2018; Weng et al., 

2019a). Solar radiation is one of the most 

important factors daily and seasonally affecting 

ST. Also, the local variations of ST are  
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associated with meteorological factors such as 

Air Temperature (AT), relative humidity, rain, 

and wind (Weng et al., 2019a). As a result, the 

individual patterns of these characteristics 

generate unique ST patterns (Mojarrad and 

Sadeghi, 2013). Recent studies have shown that 

the mean AT of  Earth increased by 0.8 ˚C during 

1906-2012 (Firozjaei et al., 2019b). Therefore, 

information on ST changes is critical for studies 

related to climate changes, SM, soil properties, 

and plant growth (Weng et al., 2019b). 

     Despite the importance of ST, the 

measurement costs, equipment requirement, and 

manpower restrict the data collection. Soil 

temperature data are usually sparse because their 

measurement is limited, especially in the 

subsurface. To fill the gap, the meteorological 

data are often used to estimate the ST, which may 

not be very accurate (Ozturk et al., 2011). Data 

of such ilk may not be available in all regions. 

Therefore, it is important to develop models that 

are capable of accurately and quickly predicting 

ST and its fluctuations. However, it is 

scientifically important  to specify the best 

combination of the most important independent 

variables. It is also necessary to develop models 

with the least number of effective parameters as 

model inputs.  

     Many methods such as Fourier series (Carter 

and Ciolkosz, 1980; Ghuman and Lal, 1989), 

linear and nonlinear regressions (Bilgili 2010), 

sinusoidal models (Lei et al., 2011), artificial 

intelligence (Singh et al., 2018), Gaussian 

process regression (Mihoub et al., 2016), soil-

landscape regression (Tsai et al., 2001), machine 

learning algorithms (Delbari et al., 2019), and 

energy balance equations (Weng et al., 2019a) 

were used to model ST at the surface and at 

different depths. Each of these methods offers 

advantages and disadvantages for ST modeling. 

Nowadays, Artificial Intelligence (AI) 

techniques such as Artificial Neural Networks 

(ANNs), fuzzy logic, neuro-fuzzy, and Adaptive 

Neuro-Fuzzy Interface System (ANFIS) (Feng et 

al., 2019; Sanikhani et al.,, 2018) have attracted  

a great deal of attention in various scientific 

applications (Pelletier et al.,, 2016) such as ST 

modeling (Bonakdari et al.,, 2019; Sanikhani et 

al.,, 2018; Yener et al.,, 2017). Maduako et al. 

(2016) modeled ST using remotely sensed data 

and ANN method. They used Feed Forward Back 

Propagation (FFBP) method and showed its 

reasonable accuracy in ST modeling.  

     Some of these studies used soil properties data 

to model ST (Knight et al., 2018; Luo et al., 

2018) while others employed AT and remotely 

sensed data (Florides and Kalogirou 2007; 

Maduako et al., 2016; Şahin et al., 2012). Delbari 

et al. (2019) utilized support vector regression 

(SVR) to estimate daily ST at 10, 30, and 100 cm 

soil depths. They used the data of three 

meteorological stations related to different 

climates in Iran. They compared the model 

results with multiple linear regression (MLR) 

results and reported that these two models 

provided a good prediction of daily ST in soil 

surface, and SVR performance was better in deep 

layers. Using 30 years of air and soil temperature 

data, Barman et al. (2017) predicted ST at 5, 15, 

and 30 cm depths. They used exponential and 

power regression models to model ST in the 

morning and afternoon. Exponential models had 

good predictions at both times. They concluded 

that the inclusion of AT was able to improve 

model performance. ANN and co-active ANFIS 

were used for ST modeling at 5, 10, 20, 30, 50, 

and 100 cm soil depths with 14 years of 

meteorological data as model input. The 

performance of both models was better in arid 

regions and the accuracy of both models 

decreased from the surface to deep layers 

(Abyaneh et al., 2016).  

     Based on literature review, long time 

temperature data are required for ST modeling,  

possibly restricting the modeling in most 

situations (Bilgili, 2010). This is because there  

are not enough meteorological and synoptic 

stations to record ST, especially in mountainous 

areas and steep slopes. Therefore, providing ST 

data is  a challenge in such areas. On the other 

hand, certain stations are newly established and 

do not have a strong regional database; thus, 

researchers may not be able to obtain the data 

they need for ST modeling. The current paper 

addresses this gap through modeling ST by use 

of short time in-situ ST data recorded by 

automatic thermal sensors. Moreover, according 

to literature review in previous studies, we did 

not consider the impact of soil properties such as 

soil texture on ST. Similarly, none of the 

mentioned studies accounted for the impact of 

shadow and sunshine on the accuracy of ST 

modeling at the surface and at depths despite 

their strong influence.  

     Given these research gaps, the purpose of this 

study was to model ST using short time air and 

soil temperature data, soil properties, and 

environmental parameters in cold season using 

regression and machine learning algorithms. The 

cold season was considered because ST data 

were not widely available in the hot season; also, 

to study the effect of environmental conditions 

such as air temperature on ST at different depths, 

the use of cold season data was more appropriate 

owing to the low impact of solar radiation on ST. 

The most important distinction between this 
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study and the previous ones is that we  

considered the effect of shadow and sun on 

modeling ST at the surface and sub-surface. 

Furthermore, for the first time, we used real short 

time ST data and measured SM in permanent 

shadow and sunlight to simultaneously 

investigate the effect of shadow, sun light, and 

moisture content. The relationship between soil 

and air temperature was also studied at two 

depths and two times of day (12 pm and 1 am) 

based on different soil textures and one manure 

sample. 

 

2. Materials and Methods 

 

2.1. Soil properties 

 

     Three types of soil texture classes, 

namelycoarse (sandy), medium (loam), and 

relatively fine (clay loam) were collected from 

Ap horizon (0-30 cm). To study the effect of 

organic matter on ST, a sample of livestock 

manure was used in this study. The texture, color, 

and bulk density (BD) were determined using 

hydrometer method (Klute and Dirksen 1986), 

Munsell color system (Pegalajar et al., 2018), 

and core method (Beretta et al., 2014), 

respectively. Saturated hydraulic conductivity 

(Ks), pH, electrical conductivity (EC), and 

calcium carbonate equivalent (CCE) of different 

soil types of were measured using constant head 

method (Wang and Benson 2018), saturated 

paste, 1:2.5 (sample: water) suspension (Jackson, 

2005), and the method described in (Nelson, 

1982), respectively. The samples were 

transferred to eight plastic containers of 

33×25×20 cm (length × width × height) size. The 

present study was conducted as a pot experiment 

in Ardebil, Iran. The geographical location of 

experiment was 38° 14' 12.75ʺ N and 48° 16' 

46.75ʺ E (Figure 1). The containers were filled 

with respective soil samples according to their 

natural conditions in the field. In all samples, the 

initial SM was 30% by volume. We prepared two 

sets of experiments consisting of four containers 

filled with four soil types. Each container was 

equipped with RC-5 automatic thermal sensors 

(Elitech UK, Figure 1b) at 5 and 10 cm depths, 

and the ST was recorded for 53 days with 10 min 

intervals. 

     Daily soil sampling was conducted for 

gravimetric SM measurement during the 

experimental phase. To prevent destructive 

effects on soil, sampling was carried out in 

another container prepared alongside the original 

boxes and under the same conditions as the 

original boxes. After 53 days (from December 22 

to February 12, 2018), the final SM of the 

experiment boxes was measured by gravimetric 

method. Additionally, the soil organic matter 

(OC) was measured  based on Walkley-Black 

method (Nelson and Sommers, 1982). 

 

2.2. Environmental (meteorological) 

characteristics  

 

     Based on the literature, environmental 

characteristics such as air temperature (Onwuka 

and Mang, 2018; Zhang et al., 2015) were further 

selected as model inputs. The AT was measured 

by two automatic thermal sensors installed on top 

of the containers (two meters above the surface) 

(Figure 1a). To study the effect of sunlight and 

shadow on ST, two sets of similar containers 

were used. The first set (four containers) was 

placed under permanent sunshine, and the second 

set (four containers) was positioned under 

permanent shadow (Figure 1b). 

     During the experiment time, the minimum 

and maximum ATs were -2.9 and 10 °C, 

respectively. The relative air humidity was 72.66 

% and the total solar time was 293 hours, which 

was representative of the cold weather conditions 

inthe region. The total precipitation was 71.3 mm 

during the experiment time. 

 

2.3. Fluctuations in air and soil temperature  

 

     Previous studies  showed the relationship 

between ST and AT (Koçak et al., 2004). 

Similarly, ST depends on the soil depth and time 

of day and year (Yener et al., 2017). We recorded 

air and soil temperatures at different depths and 

different times of day to investigate the diurnal 

variations and their relationship with other soil 

properties. We also studied the correlation 

between ST and AT at different depths and soil 

types. The R2 values were calculated to 

quantitatively study their association. AT was 

plotted against ST at 5 and 10 cm depths at two 

times of day in the presence (12 pm) and absence 

of sunshine (1 am).  

 

2.4. ST modeling based on soil properties and 

environmental parameters 

 

     Air temperature (AT), SM, BD, sun (sun-

shadow) (S), soil depth (D), day per year (DA), 

and hour per day (T) were included as 

independent variables to predict ST. The ST 

measured at different depths was also considered 

as dependent variable. Three different 

algorithms, namely MLR, ANN, and ANFIS 

networks, were employed for ST modeling. 
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(a) (b) 

  

(c) (d) 

  

Fig. 1. Automatic thermal sensors used in the research: (a) placing the containers in two sections (shadow and sunlight), (b) 
sampling for BD determination (c), specifying the soil color (d) 

 

2.4.1. MLR 

 

     Regression analysis is a statistical method for 

modeling the relationship between variables. 

Several kinds of regression, including linear, 

multiple, and nonlinear regression are  employed 

in statistical analysis (Chatterjee and Hadi, 2015; 

Seber and Lee, 2012). Multiple linear regression 

(MLR) was used in this study to examine the 

impact of soil properties and environmental 

parameters on ST and its modeling. MLR can 

determine the influence of soil properties and 

environmental parameters on ST. This method 

was selected  owing to its simple and easy 

implementation, low processing volume, clear 

processing and output process while artificial 

intelligence methods are black box. However, 

various studies have reported that the 

relationship among ST, soil properties, and 

environmental parameters is rather complex 

(Bonakdari et al., 2019; Abyaneh et al., 2016). 

Therefore,  the relationship of soil properties and 

environmental parameters with ST may be 

nonlinear under various conditions, in which 

case artificial intelligence methods could be 

useful. 

 

2.4.2. ANN 

 

     In ANN networks, the input and output values 

are related to one another(Singh et al., 2018). 

Multilayer networks are very powerful and can 

estimate any arbitrary function with a finite 

number of discontinuities (Firat and Gungor, 

2009). In the multilayer neural network, each 

layer has its own weight matrix, bias vectors, and 

outputs. The outputs of each middle layer are 

utilized as the next layer inputs. Having a hidden 

layer with sigmoid function in the middle layer 

and linear function in the output layer, ANN  is 

able to approximate all the desired functions with 

any degree of approximation providedthere are 

sufficient neurons in the hidden layer (Bilgili, 

2010; Hecht-Nielsen, 1992). In the present study, 

a multi-layer perceptron ANN was employed 

with an error post-propagation algorithm, a 

perceptron network with a hidden layer tangent 

function, and a linear transfer function (purelin) 

for the output neuron. To implement the model, 
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the collected data were randomly divided into 

three sections with 70% of the samples as 

training, 15% as validation, and 15% as testing. 

Levenberg-Marquardt algorithm was employed 

for training.MATLAB R2014a toolbox was used 

to design the ANN method.  

 

2.4.3. ANFIS 

 

     ANFIS technique is a hybrid method  having 

the advantages of both ANN and Fuzzy logic 

(Walia et al., 2015). In this study, the ANFIS 

network contained five layers with several nodes 

and was described by the node function. In layer 

one, every node was an adaptive node with a 

node function such as a generalized bell or a 

Gaussian membership function. In layer two, 

each node multiplied the incoming signals and 

the output was a product of all the incoming 

signals. Each node output represented the firing 

strength of a rule. In layer three, each node 

calculated the ratio of the ith rule’s firing strength 

to the sum of all rules’ firing strengths. The 

normalized firings were the output of this layer. 

In layer four, each node calculated the 

contribution of the ith rule to the overall output. 

In layer five, one single node calculated the final 

output as the summation of all input signals 

(Karthika and Deka, 2015). The grid partition 

and sub-clustering structure were used to create 

the ANFIS network. In grid partition, the range 

of each input was divided into equal intervals; 

one rule was created in each multidimensional 

space resulting from the combinations of 

different inputs. Four types of membership 

function (triangular, trapezoid, Gaussian, and 

bell-shaped) were considered to represent the 

inputs (Figure 2). Output membership functions 

in both network structures were linear. Hybrid 

optimization method was used for network 

training. Several rules and a predictive linear 

function were created by ANFIS (Table 3), and 

different values were modeled (Figure 3). At this 

stage, the weight of each rule was determined 

based on the entry degree of the input signal in 

the membership functions for each variable. To 

implement the model, the collected data were 

randomly divided into two sections where 70% 

of the samples were assigned to training and 30% 

to testing the model. The final modeled values 

were determined from Eq. (1) (Buragohain and 

Mahanta, 2008). 

 

𝑓 =
𝑤1𝑓1 + 𝑤2𝑓2

𝑤1 + 𝑤2

       (1) 

 

where f1 and f2 are the linear functions of rules 1 

and 2, and w1 and w2 are the weights 

corresponding to each rule, respectively.

 

a b 

  
c d 

  

Fig. 2. Primitive sample membership functions of input variables: (a) bells, (b) trapezoidal, (c) Gaussian, and (d) triangular. The X 

and Y axes show the input variables and membership degree of input variables, respectively. The lines indicate the membership 
functions 

 

2.5. Accuracy assessment 

 

     To evaluate the ability of the models to model 

ST and determine the performance of each 

approach, the statistical criteria related to the 

coefficient of determination (R2) and Mean 

Absolute Percentage Error (MAPE) were used 

(Eqs. (2) and (3)) (Carman, 2008; Jacovides, 

1998): 

 

𝑅2 = 1 −
∑ (Ymeasured        −Ymodeled)𝑁

𝑖=1
2

∑ (Y̅measured−Ymodeled)𝑁
𝑖=1

2  (2) 

  

MAPE =
100%

N
∑

Ymeasured−Ymodeled

Ymeasured

n

i=1

 (3) 
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where N, 𝑌𝑚𝑜𝑑𝑒𝑙𝑒𝑑 ,  and 𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  are the 

number of samples, modeled values, and 
measured values, respectively. Y̅measured  is the 

mean of the measured values. 

 

Fig. 3. ANFIS rules viewer and rules of the ST models. The grey signs indicate the range of input variables. Upper values such as 

TA= 0.835 are random numbers which we entered into the model to assess its capability in ST modeling. The numbers next to the 

shape (1-20) are the rules number 

 

3. Results and Discussion 

 

3.1. Environmental (meteorological) 

characteristics and soil properties 

 

     The minimum and maximum recorded ST 

were 30 and 60 C, respectively; the total number 

of ST data recorded for each soil type was 5759. 

The highest BD belonged to the sandy soil (1.85 

g cm-3), and the lowest value was detected in the 

clay loam soil (1.25 g cm-3) (Table 1). Due to the 

presence of more aggregates and pores, the BD 

of clay loam soil was lower than sandy soil 

(Daddow and Warrington, 1983). Due to the 

proximity of the particles and the reduction in the 

pores between them, BD was higher in the sandy 

soil (Chaudhari et al., 2013). The highest and 

lowest Ks values were related to sandy soil (2.59 

cm min-1) and clay loam soil (0.09 cm min-1), 

respectively. Ks values are directly affected by 

pore size which was higher in the sandy soil (Ren 

and Santamarina, 2018). The manure sample had 

the smallest pH (5.5) and was more acidic than 

the soil samples. It had the highest EC (11.2 ds 

m-1) in comparison with other soil samples. Clay 

loam soil had the highest CCE, which can be 

attributed to the role of the clay minerals in the 

absorption of elements such as calcium and their 

availability (Kome et al., 2019). Among soil 

samples, the maximum and minimum OC values 

were detected in clay loam and sandy soil, 

respectively, which is due to the ability of fine-

textured soils in OC protection. As a result, OC 

content in clay loam soil was higher than coarse-

textured soil which was sandy in this study 

(Hassink et al., 1997) (Table 1).  

 
Table 1. Characteristics of the studied soils and manure sample 

Texture 
Sand 

)%( 
Silt 

)%( 
Clay 

)%( 
Color 

BD 

(3-g cm) 

Ks 

 (cm min-1) 
pH 

EC 

 (ds m-1) 

CCE 

(%) 

OC 

)%( 

Sandy 90 8 2 7.5 YR 5/3 1.85 2.59 6.9 0.11 4.6 0.10 
Loamy 44 38 18 7.5 YR 7/3 1.6 0.97 7.2 0.26 10.3 0.53 

Clay 

Loam 
36 26 38 5 YR 4/3 1.25 0.09 7.5 0.83 18.0 0.84 

Manure - - - 7.5 YR 3/2 0.64 2.13 5.5 11.2 0.0 29.42 

 

3.2. Fluctuations in ST and AT 

 

     The decrease in AT  reduced the ST in both 

depths (Figure 4). Generally, temperature 

changes play a special role in the natural 

environment (Liao and Huang, 2012). The 

variation range of ST in the soil surface was 

higher than the subsurface during the day. Also, 

because of the higher AT, the ST was greater 

throughout the day than night. The ST variation 

at 5 cm depth was higher than 10 cm. This means 

that by increasing the soil depth, the range of 

variations decreased, which is due to the lower 

impact of climatic parameters with the increase 

in soil depth (Parsafar and Marofi, 2011). Several 

studies have shown that there exists a delay in 

heat transfer in soil (Bi et al., 2018; Park, 2018). 

These results are similar to some other findings 

(Liang et al., 2014; Mojarrad and Sadeghi, 

2013).  

 

TA=0.835 
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Fig. 4. Air and soil temperature fluctuations at 5 and 10 cm soil depth. This diagram is related to loamy soil as an example 

 

     Figure 5 depicts the diagrams of 5 cm (a) and 

10 cm depths (b)  for each soil type. Generally, 

soil type had no effect on the order of deep ST 

distribution in this study. This result is probably 

due to the low air temperature. When the 

temperature of the soil samples was higher than 

the average AT, the manure temperature was 

higher than soil samples at 5 cm depth. 

Meanwhile, when the temperature of the soils 

was lower than the average AT, the manure 

temperature was less than the soil samples at 5 

cm depth (Figure 5a). This finding is probably  

attributed to the more water retention in the 

manure sample (Reeves, 1997).Owing to its 

sponge-like properties, organic matter has higher 

water holding capacity and absorption compared 

with soil samples. Moisture acts as a dielectric 

material in the soil and prevents sharp and 

sudden temperature changes. Accordingly, SM  

improves the heat balance during night and  

increases the heat storage and nocturnal ST. With 

the increase in moisture, the difference between 

day and night temperature decreases. This  might 

also be attributed to the higher absorption of heat 

by organic matter (Onwuka and Mang, 2018) 

during the day and lower loosing of that during 

night in cold weather. These results are similar to 

the findings of Al-Kayssi et al. (1990); they 

reported a decrease in ST differences between 

daytime  and nighttime  as a result of moisture 

content increase. This  positively affects plants 

when the soil has sudden temperature changes. 

The plant root system has been protected from 

sharp changes of ST by moisture effects on that. 

Also, higher SM  increases solar energy 

absorption by the soil. Thus, heat storage 

capacity increased in wet soils, affecting the 

plant climate and plant growth in the soil, which 

is in line with Bilgili (2010) results. He 

concluded that the SM related to soil 

texturestrongly affects the temperature gradients. 

Another factor affecting ST is organic carbon 

(OC) which makes the soil color darker. Dark 

color causes more solar energy absorption, hence 

warmer soil. Moreover, the ST at both studied 

depths during night was higher than the AT 

(Figure 5). This result confirms the time delay in 

heat transfer in the soil (Li and Lai, 2012).  

     During the first few days of the experiment, 

the manure temperature variation was less than 

soil, probably due to the initial SM of the 

samples. The higher water holding capacity and 

higher SM storage in the manure contributed to a 

different thermal behavior (Oyeyemi et al., 

2018). This process was true for other samples as 

well. In the following days, on the other hand, 

SM content diminished under the influence of 

wind and sun. As a consequence, its temperature 

behavior changed compared to the first days.  
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(a) 

 
(b) 

Fig. 5. Soil temperature at 5 cm (a) and 10 cm (b) depths in soils with different textures and in the manure sample. Some 

temperature variations in different samples are shown with three ovals on the graph (a) 

 

     The difference between the ST was more 

evident at 10 cm depth (Figure 5b). This  might 

be attributed to the difference in heat conduction 

and heat transfer at different soil depths (Bilgili, 

2010; Lu et al., 2007). Due to the effect of the 

solar energy at the soil surface, heat transfer does 

not have an important role. Meanwhile,  at the 

subsurface, the main determinant of ST is the 

intensity of heat transfer from the surface to the 

depth of the soil (Kupfersberger et al., 2017; 

Quattrochi and Luvall, 2004). This was also 

confirmed by the visual survey of temperature 

curves (Figure 5b). As seen in the ST curves, the 

difference between the temperature of the 

experimental samples and the air temperature 

curves was higher at nighttime. This difference 

was especially greater in temperatures below the 

mean air temperature. Earth’s surface 

temperature is affected by many environmental 

variables such as surface biophysical 

characteristics, topography parameters, solar 

radiation, AT, wind intensity, SM, and soil type 

(Alavipanah et al., 2017; Oyeyemi et al., 2018; 

Weng et al., 2019a).  

     The thermal conductivity of the soil expresses 

the soil ability in heat conduction and is strongly 

affected by physical properties of the soil such as 

BD, SM content, and other soil physical 

properties (Rubio et al., 2009). Different soil 

properties are among the most important factors 

controlling heat emission in the soil (Mojarrad 

and Sadeghi, 2013). We investigated the 

relationship between AT and the ST recorded at 

different depths and soil types. To this end, the 

R2 values were calculated and the regression 

lines were plotted at both depths (Figure 6). 
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Loamy soil 

  
Clay loam 

  
Sandy soil 

  
Manure 

(a) (b) 

Fig. 6. Soil temperature at 5 and 10 cm depths at 12 pm (a) and 1 am (b) in different days during the experiment period and their 
correlation with AT 
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     In all four samples (sandy, loamy, clay loam 

soils, and manure), the correlation between ST 

and AT was stronger at 1 am than 12 pm (Figure 

6). The effect of solar radiation, AT fluctuations, 

time delay in heat, and soil fluctuations resulted 

in a lower correlation at 12 pm. However, at 1 

am, the lack of solar radiation and the stability of 

the AT conditions resulted in a greater 

correlation between ST and AT. There was no 

significant difference between the samples in 

shadow and sun, possibly due to the cold weather 

and low AT.  

     As the manure bulk density was the lowest, 

minimum temperature changes in the manure 

sample and maximum temperature changes in 

sandy soil were expected (Angers and Chenu, 

2018). With the increase in bulk density, the 

contact between the particles increased,  

subsequently augmenting the thermal 

conductivity (Lipiec and Hatano, 2003). The 

amount of heat dissipated through the manure 

surface increases with increasing the bulk 

density; this is because it increases the rate of 

heat energy passing through a unit cross-

sectional area of the manure (Onwuka and Mang, 

2018). 

     The large amount of organic matter  reduced 

the brightness value of soil. The darkness of soil 

is due to the presence of high amounts of organic 

carbon. OC not only resulted in a significant 

absorption of solar radiation, but also decreased 

the temperature changes within the soil. The 

effects of OC are  related to its inherent spongy 

microstructure (Ghuman and Lal, 1989; Terefe et 

al., 2008). It also  augments the water absorption 

capacity in the soil substrate (Rawls et al., 2003). 

Therefore, manure was expected to have the 

lowest temperature variations in contrast to 

sandy soil with the lowest organic matter content  

as characterized by the highest temperature 

variations. 

 

3.3. ST modeling based on machine learning 

algorithms 

 

3.3.1. MLR 

 

     Air temperature, humidity, and soil physical 

properties could be effective predictors in 

estimating the subsurface temperature. The most 

significant aspect of MLR method is selecting 

the predictors of dependent variable prediction. 

Thus, all independent variables were added to the 

model as inputs. The MLR model output was as 

follows. The relationship between ST, as a 

dependent variable, and input factors to the MLR 

method was obtained for the cold season:  

 

TS=8.38+0.333AT-.025DA+0.002T+0.705S-

0.109M+0.163D-1.67BD                                  (4) 

 

     The regression model (Eq. 4) shows the 

importance and the effect of independent 

variables on dependent variable (ST); it also 

shows how independent variables can affect ST. 

Unlike ANN and ANFIS, MLR can provide 

information on the internal structure of the model 

and the relationship between independent and 

dependent variables.  

     According to the standardized coefficients 

(Eq. 4), AT, day, time, sun's state, moisture, 

depth, and BD had the most impact on the ST. 

The R2 and MAPE values between the modeled 

ST and the observed ST (0.58 and 35, 

respectively) were used to assess the model 

performance. There was no statistically 

significant difference between the temperatures 

of the soils and different colors. This might be 

ascribed to the low temperature and low solar 

radiation of the sun during the research period. 

The amount of surface incoming solar radiation 

is lower in winter because of the smaller angle of 

landing (Allen et al., 2006; Firozjaei et al., 

2019a; Kalogirou, 2013). This is possibly 

another reason that color  had no effect on ST. 

The effect of SM on ST was negative, meaning 

with the increasing moisture content in the soil, 

the temperature decreased (Dai et al., 1999). 

Depth and BD had positive effects  where their 

increase augmented the ST. 

 

3.3.2. ANN 

 

     The R2 and MAPE between the observed and 

modeled ST using ANN were 0.91 and 15, 

respectively. These values indicate the better 

performance of ANN over the MLR method.  

 

3.3.3. ANFIS 

 

     Several rules were created by ANFIS model 

along with a predictive linear function (Table 2). 

     The membership functions of all inputs for the 

first and second half of the information are 

represented by the letter S and B, respectively 

(Table 3). The first part in this network is in the 

form of Fuzzy rules (if-then), and the resultant 

section is non-Fuzzy in the form of a linear 

function consisting of input variables. The R2 and 

MAPE for the best network and membership 

function of ANFIS were 0.96 and 10.5, 

respectively. 
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Table 2. The linear output functions (ST) and their input variables of AT, SM, BD, sun (sun- shadow) (S), soil depth (D), day (DA), 

and hour per day (T) 

Rules 
Input Variables 

Linear output functions (ST) 
T DA D S BD SM AT 

Rule No. 1 S S S S S S S 
ST= -0.1463AT+ 4.431SM+ 163.7BD -8.147S -40.74D+ 

8.097DA -0.005851T -8.147 

Rule No. 10 B S S B S S S 
ST= 1.16AT -1.576SM+ 11.02BD+ 1.714 4.284S -1.07D 

-0.004912DA+ 0.8568T 

Rule No. 21 S S B S B S S 
ST= 0.2396AT+ 1.988SM+ 71BD -1.213S -12.13D+ 

2.377DA -0.004891T -1.213 

Rule No. 36 B B S S S B S 
ST= 0.3627AT+ 0.8709SM+ 389.2BD -10.81S -54.03D+ 

1.669DA -0.004402T -10.81 

Rule No. 50 B S S S B B S 
ST= 4.329AT -2.141SM -52.19BD+ 3.738S+ 18.69D+ 

1.079DA -0.00833T+ 3.738 

Rule No 67 S B S S S S B 
ST= -0.1712AT+ 13.9SM+ 34.28BD -3.29S -16.45D -

11.49DA+ 0.07315T -3.29 

Rule No. 81 S S S S B S B 
ST= 0.4232AT -1.385SM -60.59BD+ 4.391S+ 21.96D -

4.139DA -0.008805T 4.391 

Rule No. 99 S B S S S B B 
ST= -1.861AT+ 18.53SM+ 1227BD -77.63S -388.1D+ 

50.78DA -0.01226T -77.63 

Rule No. 112 B B B B S B B 
ST= 0.2269AT -0.5059SM+ 1110BD -3.971S -19.85D -

5.624DA -0.4056T -1.985 

Rule No. 128 B B B B B B B 
ST= -0.3293AT -17.95SM -488.2BD+ 82.33S+ 411.6D -

27.22DA -3.146T+ 41.16 

 

Table 3. Characteristics and results of five types related to network and membership function of ANFIS for ST modeling 

Results 
Optimization method 

Number of 
membership functions 

Type of membership 

function Type of network 

MAPE R2 Input Output 

13.3 0.93 Hybrid 2-2-2-2-2-2-2 Gbellmf Linear Grid Partition 
13.8 0.94 Hybrid 2-2-2-2-2-2-2 Gaussmf Linear Grid Partition 

11 0.95 Hybrid 2-2-2-2-2-2-2 Trimf Linear Grid Partition 

10.5 0.96 Hybrid 2-2-2-2-2-2-2 Trapmf Linear Grid Partition 
12.8 0.94 Hybrid - Gaussmf Linear Sub-clustering 

 

     Among the different methods of ANFIS 

networks, the grid partition models had a higher 

R2 than the sub-clustering models. However, 

their execution time to reach the constant error 

took longer, which can be attributed to the 

number of rules created in each of these states. 

Figure 7 shows the general structure of grid 

separation and the sub-clustering. The split-mode 

network had 128 rules and the sub-clustering 

regime had 71 rules. Many rules made the 

network more precise and sluggish. Such 

behavior has also been reported in other studies 

(Ay and Kisi 2014). 

 

  
 (a)                                                                    (b) 

 

     Figure 7. Structure of the best ANFIS 

models for ST modeling: a) inference system 

with grid separation method, b) inference 

system with sub-clustering method. The black 

spheres are input variables in the left side and 

output variables in the right side, and white 

spheres are the membership functions. 

 

 

 

3.4. Accuracy assessment of different model 

results  

 

     The R2 between the measured and modeled 

ST using the MLR, ANN, and ANFIS models 

were 0.58, 0.91 and, 0.95, respectively, 

indicating the different performances of various 

models (Figure 8). 

     The accuracy assessment results showed that 

the ANFIS model had a better performance than 

ANN and MLR. This better performance  might 



Fathololoumi et al. / Desert 25-2 (2020) 185-199 
 

 
 

196  

be attributed to the simultaneous use of the 

properties of both the neural network and the 

Fuzzy inference; thus, ANFIS is able to extract 

the rules from the observed data. The extracted 

rules  enhance the prediction accuracy. The 

results revealed that the ANFIS model was able 

to accurately model ST with the least number of 

real soil temperature data and inputs for the 

model in the cold season. The better performance 

of the ANFIS than the ANN model has been 

reported by many researchers (Firat and Güngör, 

2007; Kurtulus and Razack, 2010). 

 
MLR ANN ANFIS 

   
 

Fig. 8. Comparison of the performance of MLR, ANN, and ANFIS models in ST modeling and comparing with 1:1 line (black dash 
line) 

 

4. Conclusion 

 

     In this study, we developed a model to predict 

ST using real short time ST data and various 

predictors such as soil static and dynamic 

properties. MLR, ANN, and ANFIS models were 

applied. The results showed that the ANFIS 

model had a realistic performance in ST 

modeling using short time data recorded in cold 

season. We considered the shadow effect on ST 

for the first time; however, it did not show a 

significant effect on ST in cold season in the 

study area. This study showed that the air 

temperature was the most important 

environmental parameter  with the most 

significant effect on ST. The ST variation was 

aligned with AT changes. Temperature 

fluctuations in the soil surface (5 cm) were more 

than the subsurface (10 cm). This means that soil 

depth temperature was less affected by AT than 

the soil surface temperature. The accuracy of the 

predictive relationship of ST at 5 cm depth (R2= 

0.96) was more than the 10 cm depth (R2= 0.92)  

owing to the faster response of the ST to the AT 

variations in the surface. By increasing the SM 

content, a time delay in heat transfer was 

observed between the soil surface temperature 

and the air temperature. This is because the most 

important role of SM is to increase the heat 

storage capacity of the soil and reduce the 

intensity of ST fluctuations as it prevents the 

sudden and sharp changes of temperature in the 

soil. This role of SM is achieved by increasing 

the evapotranspiration rate, heat flow in the soil, 

dissipation of heat down the profile. The results 

showed that AT, SM, and other soil physical 

properties could be effective in estimating the 

ST. The correlation between ST and AT  was 

more significant in the absence of sunlight, 

which is due to the time delay in heat transfer and 

temperature fluctuations in the soil. In the present 

research, there was no significant difference 

between the sample temperatures in shadow and 

sun. This is probably attributed to the lower 

amount of surface incoming solar radiation and 

the low AT in the winter. Therefore, it is 

recommended to investigate the difference 

between the ST in two conditions (shadow and 

sun) in arid and semi-arid areas in the summer 

season, where the difference between shadow 

and sunlight is greater. Such research will also be 

very useful for understanding the relationship 

between ST, climate change, and global 

warming, which has become an increasingly 

urgent issue over the recent years. It also helps to 

understand ST behavior and its changes to 

improve the knowledge  on the growth of crops 

in the soil and other applications. Also, it is 

recommended that this study be conducted under 

field conditions for one year, so that the results 

can be extended to all seasons and natural 

environments. 
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